

CMU-C S-82-145

Problem Solving Techniques
for the Design of Algorithms

Elaine Kant and Allen Newell

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

23 November 1982

This paper will appear in Information Processing and Management.

Abstract

By studying the problem-solving techniques that people use to design algorithms we can learn
something about building systems that automatically derive algorithms or assist human designers. In
this paper we present a model of algorithm design based on our analysis of the protocols of two
subjects designing three convex hull algorithms. The subjects worA mainly in a data-flow problem
apace in which the objects are representations of partially specified algorithms. A small number of
general-purpose operators construct and modify the representations; these operators are adapted to
the current problem state by means-ends analysis. The problem space also includes knowledge-rich
schemas such as divide and conquer that subjects incorporate into their algorithms. A particularly
versatile problem-solving method in this problem space is symbolic execution, which can be used to
refine, verify, or explain components of an algorithm. The subjects also work In a task-domain space
about geometry. The interplay between problem solving in the two spaces makes possible the
process of discovery. We have observed that the time a subject takes to design an algorithm Is
proportional to the number of components in the algorithm's data-flow representation. Finally, the
details of the problem spaces provide a model for building a robust automated systm.

This research is supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539. The
views and conclusions contained In this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Table of Contents
1. Algorithm Design and Software Science I

1.1. Automation methods for algorithm design 1

1.2. Why study how people design algorithms? 3

2. A Method for Studying Algorithm Design 3

2.1. The problem space theory 3

2.2. The role of protocol analysis 4

2.3. The issues 4

2.4. The problem domain 5

2.5. The subjects and the protocols 5

3. Case Studies 6

3.1. The problem 6

3.2. Overview of behavior of S2 on Algorithm GT (generate and test) 6

3.2.1. Summary of algorithm 8

3.2.2. The story of S2's solving attempt 9

3.3. Overview of behavior of 82 on Algorithm DC (divide and conquer) 9

4. Overview of behavior of S4 on Algorithm DC (divide and conquer) 11

4. A Model of Algorithm Design 11

4.1. An overview of the model 11

4.2. A data-flow problem space 16

4.3. The task-domain space 18

4.4. Discovery Aoe 19

5. A Comparison of Designs -- R 26
DTIC TAB

Acknowledgements 30

6. D sT-

'7A
. i f~tr' ..!

I .r v , " Iwo.,

List of Figures
Figu re 3-1: A point set and its convex hull 6
Figure 3-2: Edited protocol of S2 developing the Initial algorithm. E , experimenter; 7

unattributed lines are spoken by S2. Each line is about 2.5 seconds.
Figure 3-3: Selected episodes in S2's Algorithm GT (times are approximate). 8
Figure 3-4: Final Algorithm GT by 82. 8

Figure 3-5: Selected episodes in S2's Algorithm DC 10
Figu re 3-6: Selected episodes in S4's Algorithm DC 12

Figure 4-1: Problem Behavior Graph of S2 on fragment of Algorithm GT (simplified). 21
Figure 4-2: Figure for discovery of Test 1 . 23
Figure 4-3: Initial division of points and solution of subproblems by S2. 24
Figure 4-4: Merge attempt in a figure by 84. 25
Figure 5-1: Decomposition of design activities, in protocol lines of 2.5 seconds/line for 28

S2 and 3 seconds/line for 84
Figure 5-2: Breakdown of main design and extra effort activities in protocol lines per 28

component

II-

L5.

1. Algorithm Design and Software Science
Software, as everyone knows, is expensive to build and maintain. One approach to the problem of

generating the large volumes of software being demanded is to automate its production. There are

many different types of software and many different phases in software development, and the type of

automation tool that is appropriate varies accordingly. In this paper we discuss one of the activities in

software development .- algorithm design. This activity typically occurs after the decomposition of a

large system into modules and before the more straightforward coding processes to be accomplished

by programmers or automatic programming systems. It involves transforming a declarative statement

of what is to be done into a procedural specification of how to do it. Of particular interest here Is the

use of psychological knowledge to aid in the design of software tools.

Algorithm design, as practiced by the computer scientist, is an activity requiring a great deal of

knowledge and intelligence. Although there are both theories and analyses for simpler synthesis

tasks, algorithm design is substantially more advanced than anything accomplished to date. It would

be quite useful to understand the types of problem solving that occur during design. Our approach to

understanding this problem solving involves analyzing protocols from sessions with people designing

algorithms. Based on these protocols, we have developed a model of the human problem-solving

process involved. In this paper we present our model and consider some lessons for automating the

design process (see also [11). First we discuss how algorithm design might be automated and the

possible benefits of studying human design techniques. In Section 2 we present our methods for

studying algorithm design and in Section 3 we give some case studies of two subjects designing three

algorithm for the same task. We then (Section 4) summarize our model and discuss the role of

discovery in problem solving. Finally, we compare the different designs of the case study according

to our model (Section 5) and discuss some conclusions (Section 6).

1.1. Automation methods for algorithm design

Although little work has been done on high-level, creative algorithm design, there has been some

related research on program synthesis and algorithm optimization that suggests some approaches for

automating algorithm design.1 Possible automation techniques Include:

* program transformation (based on expert knowledge)

* formal derivation

* inductive learning systems

1We e not concerned here with automation involving requiramen languages or onftguralion management ama for

le cosleton of alpe compornnf md nWtaAL

2

Much of the existing work on program synthesis that comes closest to algorithm design [1,4, 8, 23]

uses successive refinement by program transformation as a basic organizing principle. Program

synthesis involves implementing a program from a very high level specification, but not automatically

deriving an algorithm. These program synthesis systems usually focus on selecting data structures or

applying user-specified transformations to develop an algorithm. The transformations modify

program sections in a variety of ways based on expert knowledge about programming. However,

these systems are rather brittle because they require that all details about programming be specified

in advance; they do not have any general problem-solving knowledge and do not learn.

Formal derivation systems apply only a small set of transformations that expand definitions of

recursion equations, recognize instances of expansions, replace them by function calls, and

accomplish a few other similar, general tasks. Such approaches have been used to synthesize

sorting algorithms [5] and list-copying algorithms [14]. One problem not addressed by most formal

derivation systems is how the axiom sets. and applicable transformation rules are chosen; human

intervention is usually required to provide the creativity necessary to specify an appropriately limited

axiom set and interesting auxiliary definitions. The LOPS system [2] does address this problem by

guessing recursive solutions to problems specified in logical equations and by verifying or modifying

the guesses with the aid of both a theorem prover and a small model constructed from the axioms.

Another variant of the formal derivation approach with some affinities to the present work, [26],

involves applying rules for moving constraints across and Into generators rather than the application

of the standard transformation rules.

Inductive learning of procedures from examples of input-output pairs has thus far only been

applied to simple problems. This approach usually involves matching to schemas and heuristic

search (for example [25]). Induction from traces has also been studied (for example [22]). If a

problem solution can be inferred from watching a person solve a particular example, then induction

based on traces may be appropriate. These techniques have been around for some time and so far

have shown little signs of evolution.

Much of the activity of software construction discussed above is more routine than the algorithm
design problem to be described here. Some varieties of software construction are already well

enough understood to be totally automated without any need to Investigate how people perform the

same tasks. For example, several strategies for data structure selection have been suggested

[10, 16, 18, 241. Also, formal derivation techniques work when a problem is well specified and

straightforward optimizations are required.

I.

3I

1.2. Why study how people design algorithms?

We are interested in human problem solving and design strategies for many reasons. First, we do

not yet understand how to automate the more difficult parts of design, so studying how people

develop complex algorithms shows us one possible approach.2 Second, a system with an

organization similar to that of a human being allows the use of people as expert sources of techniques

for getting the system started and as resources to be examined as the system evolves. Third, since

the human system organization is one that permits continual augmentation and adaption, this

approach may lead to an automatic system that could eventually learn some design principles on its

own. Fourth, from what we already know of human behavior, the mechanisms and representations

will be flexible and robust, properties sorely needed by current systems. Fifth, it is useful to

understand how people think about design. A design assistant program that can follow suggestions

to carry out routine subtasks, act as a sounding board, give advice to moderately skilled

programmers, or teach novices, requires such understanding. Even the simpler, possibly

automatically designed parts of a system may have to be explained or modified or interfaced to

human-designed parts. Thus, there are many putative advantages to studying how humans design.

The real issue is whether useful knowledge can be obtained.

2. A Method for Studying Algorithm Design

2.1. The problem space theory

Our analysis is driven by a theory of how humans solve problems that has wide currency in

cognitive psychology (20, 21]. The central concept is the problem space. A problem space contains

partial knowledge about a problem and its solution (the current state). The subject has a set of

operators that can be applied to the current state to produce a new state. The subject starts with an

initial state (here, the problem as posed by the experimenters) and tries to discover a state that

contains a solution (here, an algorithm). Behavior in this space involves a search, since the subject

usually does not have enough knowledge to proceed directly to the final desired state, especially if

the problem is difficult. The subject does, of course, have some (often substantial) search control

knowledge that guides the selection of which operators to apply. But in general the subject will try

various paths and run out false leads into dead ends, causing a return to earlier states that can be

remembered (or constructed), and eventually will proceed down more appropriate paths. The current

state grows throughout the problem solving, as the subject gradually explores the space and acquires

knowledge of its various aspects.

27rl hs bee one intereslng study about how peo* decompoe complex programming problems 19.

4

More than one problem space can be created during problem solving. Satisfying subgoals may

imply working in the same space or may require an entirely different space. For instance, if the main

space is one of algorithms for the convex hull, as in our task, a problem about the geometry of points

in the plane must be settled in a space whose elements are point sets, not algorithms.

2.2. The role of protocol analysis

The problem space theory says that people design algorithms by searching in problem spaces. To

use that knowledge to help us design an algorithm discovery system, we need to find out what the

problem spaces of the subjects are -- what representations and operators exist and what search-

control knowledge guides their search. Given such details, we can expect some strong hints about

algorithm discovery systems.

The appropriate experimental technique to answer these questions [21, 7] is to set qualified

subjects some tasks of discovering algorithms and to have them talk aloud while working. We record

a detailed protocol of their solving behavior, and then analyze this behavior in detail. The analysis of

the protocol involves hypothesizing problem spaces and showing by detailed analysis of the moves

that the subject makes and the information mentioned that these are indeed the correct spaces. This

requires specifying the states of the spaces, the operators, and the search control (i.e., operator

selection heuristics, state evaluations, goals, and methods). The same total body of evidence (the

protocol) is used both to induct the problem spaces and to test them (indeed, the analysis is highly

iterative). Thus, the evidence comes from the web of detailed agreement and the initially obscure

comments of the subject that make sense given the final posited problem space organization. We do

not attempt to simulate the full protocols or understand all the steps the subjects take, but we must

specify the results we take from the analysis well enough to be interesting for potential systems.

2.3. The Issues

Our initial protocol analysis (described in [11]) focused on understanding the problem spaces that

our first subject used in the first segment of the design session. We identified two problem spaces, an

algorithm design space and a task-domain space (a geometry space). The initial issues of interest

were how to represent partial knowledge and problem-space operators and how to apply operators

and control search. To address these issues, we constructed a detailed trace of the behavior of the

subject in the main algorithm-design problem space, showing the goals and subgoals, the operator

applications, and the search control knowledge used to make various selections and evaluations.

This resulting initial model of algorithm design enabled us to analyze some additional protocols

much more quickly than our original attempt. We also analyzed, in less detail, the problem solving in

5

much more quickly than our original attempt. We also analyzed, in less detail, the problem solving in

the task-domain space. This work revealed some new issues and allowed us to compare several
design sessions. While we are interested in the details of the subjects' problem spaces and how they

fit together (the exact representations and operators that the subjects are using) because the spaces

are major candidates for incorporation into an automated algorithm designer, the analyses are too

long to present here. Instead, we summarize the general approach we have identified, concentrating

on our new findings about the search control mechanisms and about the process of making

discoveries. We also compare the design sessions.

2.4. The problem domain

For this study, computational geometry, and in particular the convex-hull construction problem,

has been chosen as a realistic design domain. One advantage of this domain is that people have

reasonable intuitions about geometry, so the problem is easily explained and subjects need not have

specialized backgrounds in computational geometry. Since the algorithms for convex hulls are not

well known, it is possible to find naive but intelligent and theoretically sophisticated subjects who can

concentrate on design rather than on remembering something learned previously. The problem itself

is interesting because finding convex hulls has a number of applications, and there are a variety of

algorithms that vary in time complexity. On the one hand, many standard algorithm design

techniques can be applied to generate the algorithms, but on the other, convex hulls can also be

found by relying on visual intuition. This allows us to watch the interplay between people solving a
problem themselves and trying to design a computationally efficient algorithm. The use of geometry

as a domain does have a potential disadvantage. People's visual intuition is not well understood, and

it may lead to design strategies quite different from those that are easy to automate.

2.5. The subjects and the protocols

The first subject (S2) has a Ph.D. in computer science and is moderately sophisticated in theory

and algorithm design, but knows little about convex hulls or complexity theory. The experiment was

conducted informally in S2's office with a tape recording made of the proceedings. Before the

experiment, we informed S2 that we were studying algorithm design, but did not suggest that any

particular approach was of interest. The problem was specified informally, and S2 was asked to

"think'out loud" while working on the algorithm. While working, S2 made a number of diagrams on

the blackboard which were copied by the experimenters. Occasional questions were asked of the

subject during the analysis. In the first fifteen minutes of the session, S2 developed an algorithm to

find the convex hull of a set of points, based on generate and test. In the remainder (about an hour's

worth) S2 developed a second, more complex algorithm based on the divide and conquer paradigm.

6

The second subject (S4) is a graduate student in computer science who is fairly sophisticated In

algorithm design and r omplexity theory but knows little about convex hull algorithms. Again, a tape

recording was made of the proceedings, but this time the subject drew a number of diagrams on

paper. In this experiment, it was suggested that 84 try a divide and conquer approach to the convex

hull problem. Within about fifteen minutes, 84 sketched a solution. At the prompting of the

experimenter, S4 spent the next fifteen minutes writing down a description of the algorithm, filling In a

few more details, and describing the time complexity in more detail.

3. Case Studies
Before considering the lessons learned from the protocols about algorithm design, it is useful to

have an overview of the problem and of the behavior of the subjects. The reader may wish to skim

these examples now, then return to them later.

3.1. The problem

The problem is to design an algorithm to find the convex hull for any given set of points. The

convex hull is the smallest subset (in the sense of set inclusion) of the points that, when connected In

a convex polygon, contains all the other points. Figure 3-1 shows an example of a point set and its

convex hull. The solution can be either the set of points on the hull given In arbitrary order, the points

listed in the order they would appear on the polygon, or the polygon described by line segments. The

problem description given to the subjects was ambiguous about what was being asked for, but the

subjects generated polygons as solutions.

FIgure 3-1: A point set and its convex hull

3.2. Overview of behavior of S2 on Algorithm GT (generate and test)

An overview of S2's behavior can be obtained In part by reading the edited protocol given In Figure

3-2. To save space here, many Interruptions, side comments, and false paths have been omitted,

although they were important In the analysis. Each line has a label, such as L77, numbered according

to the original protocol. In the figure, S2'9 behavior ha, been segmented into a series of short

sections, called episodes, each of which contains essentially a single event or topic.

7

Episode 1
LI E: [>)Minute<<(Do you know what a convex hull is? L125 So I know that the line C-B can't be on the hull.
L2 Vaquey. Why don't you give me all the definitions. L126 So I have to retreat back to C.
L4 E: Suppose you have a set of points, Ok... L128 It looks like I'm not going to come up with a linear
L7 E: well there s several ways you can define it. 0goiithm to do this.
L8 E: Either the polygon that encloses all the other points 129 So therefore Ill go from C to some other point.
L9 E: or the set of points on the polygon. L130 Same problem with D, so I'fl go to E.
LIO Yes. that's a hard problem L131 And I win:
LIIandIdontknowanyofthealgorithms. L132 all points are always on one side of the line.

L133 If fact they're always on the... the right side,
Episode 2 L135 if I give this directionality.
L18 Right. The problem is you've got a bunch of points. L136 If I go from E to B I lose
L19 Let's not worry about how they're specifled. L137 because C is over here and B is over here.
L20 What's a reasonable solution? L138 So that leaves me D
121 [>Minute 2<<l Let's start with some point. L139 and then I go back.
L25 Either a point is on the convex hull or its not, right? L140 So I've got a convex hull.
L27 And the question is how to make this decision. Episode 3.5

L141 E: Now could you describe your algorithm?
Episode 3 L142 Well, I'm not sure it's an algorithm yet, right?

isode 3.1 L143 Because if I start at a losing point,
L2Let's take a few points here. (Draws 4 points.) 1144 if I were to have started at this middle point. B,

L29 Well, that's not a good example, L146 f>Minute 8<< I would have found that...
L30 because all four of them are on the convex hull. L147 here's no point that I...

[S draws figure with 5 points not all in hull.) L1481 couldn't have gotten to.
L5 OK, let's suppose I start with a point here. L149 None of the segments from B,
L36 And I'll just draw a line to some other point, right. L150 B-A, B-C. B-D, or BE, uh,
L42 Now I can go in any one of three directions L151 would have given me a satisfactory line.

from this point. L152 So I would have given up on B
143 [>Minute 3(<] I conjecture that L153 and tried some other...
L44 if it's the case that I can choose two points, L154 some other point to start with.
L45 such that I can go on either side of the given line, 1-155 So, I keep doing that
L46 then this line can't be on the convex hull. L156 till I get a point that satisfies it.
L47 And I had better retreat. L157 There must be such a point,
.51 Here's A, B C. D, E, ri ht [labels points in Figure 1]. L158 since there is a convex hull presumably.

L52 On I fino fromAtoa. L 160 That sounds like the algorithm.L53 And I fingthat from B Episode 3.6
L54 I can go either to C or D, L168 Choose a point pO, ok.
L55 and C and D are on different sides of this line... L169 Then, uh, choose a point pl from the remaining
L61 then clearly this line can't be on the convex hull. set of points,
Episode 3.2 L170 Draw that line segment.

163 Let's retreat, uh [>>Minute 4< L171 Um, if it's the case that
L64 back.., back to A L172 there are points on both sides of that line segment,
L65 and choose some other point L173 then. uh, give up on pl and try '-ome other point
166 And this time we'll chose C. 1174 [Pause] Al right, um, andJ keep doing that.
L67 Right? So now I have a line from A to C. L175 [>>Minute 9<(and if you exhaust allthe points,
Episode 3.3 1177 then pO can't be on the convex hull.

L68 Let me rephrase the problem to make it even harder L179 so you go try another point to start with.
on myself.

L70 I had a line drawn from A to B, OK. Episode 4 2
L71 And I'm considering these five points here. L181 This looks to me like an N ... [>Minute 10(<1
L72 What I want to do is rephrase the problem L182 No, it's worse than that. 3
L73 so that I'm starting at point B. [pause] 1228 [>>Minute 11<<] I gugis it's N . [pause]
L74 E: Why point B? L231 Because, why is that?
L75 Because if I start at point B L232 I choose a line segment.
L76 and I go to A L233 If the line segment is successful,
L77 then. -ither route here, 1234 I look at the endpoints.
L78 1 sti, .. ie that problem L235 If it falls,
L79 and I want to retreat 1237 I can look at up to N-1 line segments,
LO back to point B. L239 from a given point
L81 But it turns out that no matter what... L243 Looking a line segment requires time N,
L82 which direction I go in from point B L244 proportional to the number of points.
L83 I'm going to have the same problem. [>>Minute 5(L245 [>Minute 12((] OK so... [long pause]
L84 So point B can't possibly be on the convex hull. L248 And if the point fails

Episode 3.4 L249 then I go to some other point,
186So let's go beck once again to starting at A L250 and I know that that point is not on the convex hull,
L87 because A is going to be on the convex hull. 1251 so I don'& have to consider it any more.
L88 And we don't want to retreat too far, right? 1252 So it's N . 3
L90 OK, so I'm going to retreat here L2531 know that N is an upper bound,
191I from B back to Arbud
L92 and go to point C Instead. L254 for this particular algorithm.
1 13 [>) < And I see that, um. 1255 So it's not a very good algorimm.
Ll4 all the points are toonesideofthe lnAC Episode5
L11l 15 So I've got a candidate. .L28 This is a first shot...
L116 Now I'm at C and now I'll g n9sisalgorithm 1.
Ll 17 Choose some other pginL c
11 18 Suppose I choos B. [pause]
L1 19 A goes to C goes.to B.
L120 Um, now I see that uh, (pause) A 1
L121 there are points on either side of the Hne C-B, right, E
L122 there's E and there's A.,
L123 [>>Minute 7(<] I guess have to look at A
L124 even though I've already got a line segment from It.

Figure 3-2: Edited protocol of S2 developing the initial algorithm. E - experimenter,

unattributed lines are spoken by S2. Each line is about 2.5 seconds.

L~~~~~ A,:- ,..',jt'

8

Figure 3-3 gives the major episodes in S2's design of an initial algorithm, indicating for each the

name (which reflects its position in the hierarchy), the sequence of lines it covers, the number of lines,

and a short descriptive phrase for the content.

I UtnM 9. MUI Descritno

El L1-L16 16 37.6 Acquire problem
E2 L16-L27 12 30 Design generate-and-test schema
E2.1 L22-L24 3 7.5 Interrupt (E2): specification of points
E3 L28-L179 162 380 Develop algorithm
E3.1 L28-L61 34 66 Find test
E3.1.1 LZ-L31 6 12.6 Get example figure
E3.2 L62-L07 a 16 Decide how to handle test failure
E3.3 L68-L86 16 46 Decide how to handle Interior start point
E3.3.1 LOe-L73 6 16 Detect problem
E3.3.2 L74-L86 12 30 Find: can discard Interior point
E3.4 L86-L140 66 137.6 Push algorithm all the way to find CH
E3.4.1 L86-L92 7 17.6 Return to previous state after E3.2
E3.4.2 L93-1108 16 40 Interrupt (S): Segment excluded, not point
E3.4.3 L127-L128 2 6 Interrupt (S): Greater then linear
E3.6 L141-11O 20 60 Develop Initialization
E3.6 L161-L179 19 47.6 Recap algorithm
E4 L180-L266 76 190 Analyze complexity
4.1 1180-1187 20 Time complexity is w:rse then N2

E4.2 L188-1204 17 42.6 Time complexity is N3
E4.3 1206-1226 24 60 Time complexity is N3
E4.4 L229-1256 27 67.6 Confirm N . Algorithm not good
E6 L266-L261 6 1116 Termination. Algorithm is first try.

26 662.6

Figure 3-3: Selected episodes in S2's Algorithm GT (times are approximate).

3.2.1. Summary of algorithm

Before trying to understand the course of the problem solving revealed in Figures 3-2 and 3-3, the

reader needs to have a general idea of the algorithm that S2 finally developed. This is shown

schematically in Figure 3.4.

delete [x] [yx] add [yx] 4 true

1x) .enerate, ---- rJ raw)ptzlhull-so-fa restI false
[y] - delete

Figure 3-4: Final Algorithm GT by 82.

The algorithm starts with the original set of points, {x}, enumerates (Generate1) them, and tests

(Test1) each one to see if it is on the convex hull. The partial hull-so-far is held in (zlhull-so-far } ,

which is used as input to the test. Actually, the partial hull is extended at each step by the operation

(Draw) of drawing a line from the prior final point (y) in (z} to the new one (x), and the test is whether

this new line could be on the hull. Thus, if the test fails (the false branch of Test1), then the latest

!L?!.' eL.

9

point must be deleted from [z}. On the other hand, if the test succeeds, then the point can be

removed from the input set {x}. Not represented in the schematic figure is S2's method for finding

the initial point on the hull. This involves discarding any point that does not have at least one

attached line that satisfies Test 1 (is on the hull).

3.2.2. The story of S2's solving attempt

The solution attempt starts (Episode El) with the experimenters giving S2 the problem. The subject

immediately (E2) develops a schema for generating the points in the set and testing whether they are

on the convex hull ({x}...>Generate1 -- ->Test 1 - --) (z }). During this episode, S2 decides not to worry

about how to represent the points. The next episode (E3) is devoted to refining the schema just

created. In the first subepisode (E3.1), S2 discovers a test (Test1) for a point being on the convex

hull. This discovery involves creating on the blackboard an example figure (E3.1.1 is devoted to

getting this figure, which starts with four points and then is enriched to five). The net result of E3.1 is

a test for an edge, with a shift from points to line segments between pairs of points (moving {z) to be

the input of Test 1 and adding the operator Draw to draw the line). The rest of E3 is driven by S2

attempting to push the special case through the partially developed algorithm, a method we call

test-case execution. This attempt leads to resolving several problems, with the consequent

elaboration of the algorithm. E3.2 settles what to do when the test fails, and E3.3 settles what to do if

the initial point is not on the convex hull. There is a special problem with initialization, since the test

requir.,s both an old and new point. With these issues cleared up, the algorithm successfully handles

all the points in the example task (E3.4). This leads to recasting the initialization (E3.5) and then

summarizing the entire algorithm (E.3.6). At this point the algorithm is complete. However, the

subject is concerned about the time complexity of the algorithm. After several tries (E4.2, E4.3 and

E4.4), S2 determines that the algorithm is N3 . S2 concludes that the algorithm is not very good and

(E5) terminates the initial attempt by declaring that it is simply a "first shot".

3.3. Overview of behavior of S2 on Algorithm DC (divide and conquer)

Following the conclusion that an N3 algorithm was not good enough, S2 produced a second

algorithm. Figure 3-5 gives the major episodes in this design session. The algorithm was based on

divide and conquer, for which S2 has available a moderately developed schema. In this attempt, S2

runs into more difficulties than in the first design, but eventually outlines a more efficient algorithm.

S2 first decides (E2) to divide by drawing a line through the middle of the set of points, but then

cannot figure out how to do the merge (E4). Later (E5), S2 decides that it might be easier to merge if

the dividing line goes through one of the points so that one point will be on both hulls. This allows a

merge process to work outward from the shared point (E6). S2 then decides (E6.9) how to remove the

Ad

10

center point, which is not on the merged hull, and how to continue the merging process in general

(E6.10) by considering a limited number of cases. In E6.1 1 -E6.13, S2 wraps up the design of the

merge step by deciding when the merge can be halted, and gives a rough analysis of the time

complexity of the merge. Next, S2 goes back to the divide and considers base cases (E7). In the

process of testing examples S2 discovers some degenerate cases in which the divide leaves all

points on one side and does not reduce the problem at all. To get around this probrem, S2 considers

dividing through two points rather than one, which also slightly simplifies the merge step (E8, E9). In

E1O, S2 tries to take advantage of dividing segments that are on the hull, but this is a dead end since

divide and conquer should build up the solutions in the merge, not the divide. It also does not get to

the root of S2's problem, which is that the dividing line needs to partition the points into sets with

equal numbers of elements. After a hint from the experimenters, S2 realizes this (Ell) and finishes

the divide by deciding to sort the points in a prepass (El 1.2) and then use the midpoints. S2 takes a

slight side path here in considering using a lexicographic sort and also decides to go back to the

single point divide (El 1.3). Finally, S2 is convinced that the algorithm works and is an N log N

algorithm (El 2).

1 Lines EL flsrtntio
E1 L-L6 6 Decide to try divide sad sequr. recall scheme
E1.3 L4-L6 3 Got example in gemtry- ce
E2 7-L2 76 Refine divide stop
E2.4 L16-22 7 Zero-point divide (extra elfert)
E3 161-L84 3 Assume solve stop cam be done
E4 L8-L103 19 Reftin merge
E4.3 LO3-LO 7 Restrict attention to poits so hells
E5 L104-LI29 26 Revise divide to line through point
E6 .L130-L886 467 Resume roflio motg
E6.1 L130-LlO 21 Overview merge (work outward from limo.

stop whom come in)
E6.2 L1l-LIG3 a Set up test case (for working outward)
E6.3 L159-L162 4 Note solve stop handled by Induction
E6.4 L163-L181 20 Continue refining merge (with example)
E.5 L183-L192 37 Refine merge (first segment)
E6.6 L220-LZ23 4 Refine stopping conditiom
E6.7 L224-L233 10 Refine how to go In other direction
E6.8 L234-L263 20 Consider complexity of merge (linear)
E6.9 L254-L324 71 Decide how to handle first point in algorithm space
E6.10 L326-L410 B6 Refine how to go again
E6.11 L411-L474 64 Detail stopping condition
E6.12 L476-L614 40 Case analysis of how to go again
E6.13 L516-L648 34 Consider running time of algorithm
E7 L5687-L617 31 Consider divide base case
E LIS-LO3i 16 Two-point divide (extra effort)
E9 L636-LGOO 34 Revise merge to match divide

E10 L670-L1029 360 Degenerate cases of divide (extra effort)
Ell L1030-1231 202 Finish refining divide
E11.1 L1030-1044 13 Read hint from book
E11.2 L1046-L1109 66 Vant equal-size problem, solve by sorting
E1.3 L110-L1Z01 02 Lexicographic sort (extra effort)
112 L1232-L1369 138 Evaluate algorithm

Figure 3-5: Selected episodes In S2's Algorithm DC

IjI

11

3.4. Overview of behavior of S4 on Algorithm DC (divide and conquer)

The major episodes in S4's solution are given in Figure 3-6. Without much hesitation, 84 accepts

(E2) the experimenter's suggestion to try a divide and conquer algorithm. 84 then proposes to divide

(E3) by taking the median of the projection of the points on the X-axis. This idea is formed quickly,

based on previous experience with geometric divide and conquer problems. Hulls are then

constructed for each half, recursively (E4). However, S4 has some trouble with the merge, rejecting

as too expensive the solution of finding additional edges for the merged hulls by generating and

testing edges between pairs of points from different hulls (E5.8). In the process of drawing the

additional edges, S4 notices that it would also be possible to divide through a shared point, and that

this would allow a merge based on repeatedly eliminating concave angles starting at the median

(E6.1). Whenever there is a concave angle, the two endpoints of the angle are joined and the old

edges are removed; if this creates any new concave angles, the process is repeated. The merge is

therefore at worst linear in the number of points on the subhulls. This key insight into the solution

happens quite quickly. After determining the basic idea, S4 describes in more detail how to find the

shared point (E7), tests the new merge (E8), and is then satisfied with the algorithm (E9). At the

request of the experimenter, 84 summarizes the algorithm, in the process noting that there are

separate cases for the division of even and odd numbers of points, and evaluating the cost of the

merge (El 0). The experimenter requests that 84 write down the algorithm. S4 then considers (El 1.2)

base cases and degenerate cases such as collinear points (El 1.3), and then writes out a program

sketch. In a discussion following the design session (E12.E13), the experimenter asks S4 about the

complexity of the algorithm. S4 states that it is N log N, then decides that this is true only if a prepass

is added to sort the points (so that the median finding can be done in constant time). S4 later noted

that there is a linear median finding algorithm, which permits the algorithm to be N log N without the

prepass. However, S4's first plan is to find the median by sorting on each recursive call, which would

give an N log 2 N algorithm, but also suggests a prepass.

4. A Model of Algorithm Design

4.1. An overview of the model

The behavior of both subjects on all three algorithm attempts presents an entirely consistent

picture that fits well with the theoretical framework we have adapted and agrees with what has been

reported in the literature about problem solving and design. Design, whether of programs,

algorithms, or almost anything else, appears to involve hypothesizing a general schema or key idea or

TI

12

S Lnes D1 Oescrtntna
El 1i-L21 28 Understand problem
E2 129-L33 6 Decide to try divide and conquer
E3 L34-138 5 Refine divide (median of projection)
E4 L39 1 Assume solve step can be dome
ES L40-Lg8 69 Refine merge (first attempt)
E6.1 L40-L46 6 Attempt straightforward union (fail)
E5.3 150-19 10 Try an example
E6.5 12-164 3 Compare final to subhull solutions
E5.5 169-176 a Get missing edges from bipartite graph
E6.10 L86-L9 13 Try to avoid generating extra edges
ES LO-LI15 17 Refine merge (successful attempt)
E6.1 Lg-L100 a Idea for revision (share point)
E6.2 L107-L112 6 Refine merge (replace concave angles)
E7 1116-1131 16 Revise divide to share median
ES L132-L146 15 Test new merge
E9 L147-L160 4 Evaluate algorithm
E1O L161-L202 62 Describe algorithm
EiO.2 L148-L191 144 Analyze cost of merge
Ell 1203-1401 199 Write down algorithm
Ell.2 1209-1230 22 Check boundary conditions and base cases
Ell.3 1231-1269 29 Check degenerate cases
E12 L402-L444 43 Interruption: discuss how got algorithm Ideas
E13 1446-1493 49 Discuss complexity of algorithm

Figure 3-6: Selected episodes in S4's Algorithm DC

solution plan and then proceeding by successive refinement.3 The protocol shows that S2 fits this

part of the scheme without doubt. In the design of the first algorithm, the first episode after the

problem acquisition (E2) involves the creation of an initial schema of the algorithm (generate and

test). This occurs very rapidly (which agrees with the other data that exists on human design). In

part, the speed comes from the schema's simplicity; it is just a kernel of an idea, and everything

remains to be done. The rest of the design time is spent in gradually refining this initial schema.

Similarly, S4 accepts the suggestion of trying divide and conquer after a few seconds thought, and

expands this kernel idea into a divide, a solve, and a merge. S4 fills in the divide part of the schema

with very little trouble based on previous experience, then flounders for a while on how to do the

merge. A successful schema follows almost instantly after realizing another key idea about dividing

through a shared point. Given the paucity of data about human design, it is important to have this

confirmation of the refinement paradigm.

However, successive refinement is not the whole story. The detailed construction of the algorithm

is accomplished by using two closely related methods:

3 The pubished evidence for this Is only modest. Some work on the psychology of programming supports this [3, 91, and it Is
lmost universally adopted in the existing systems that do programming of any complexity (see examples cited previously).
Counterexamples seem to occur in tasks that have been restricted enough to become strongly combinalorial in a fixed space,
so there is no constructive idea to be discovered (for example, space layout problems).

13

* Symbolic execution: Execution of the program with general symbols as input; the
symbols become elaborated (with assertions) along with the algorithm (new components
and assertions are added) in the process of execution. Processes in the algorithm
description are symbolically executed only once.

* Test-case execution: Execution of the program on a specific test case, with the
algorithm becoming elaborated as the process proceeds. There may be many cycles of
execution if generators in the algorithm produce different test-case items.

These methods are more than just code generators. They are the major device for generating

consequences and exposing problems and complications. Only the concrete situation can uncover

what really must be done by the algorithms, because human memory is essentially associative and

must be presented with concrete retrieval cues to make contact with the relevant knowledge. These

two methods serve this purpose. Furthermore, the protocols show that these methods are used after

only a small amount of refinement.

The use of *successive refinement and these execution methods does not imply that design is not

search in a problem space. Initial kernel design ideas are sometimes wrong and have to be

abandoned. Thus, the use of these methods implies only that the search space is one of schematic

structures in which some operators refine partially specified structures or assertions and other

operators carry out the execution methods.

Most of the subject's design behavior seems to occur within a single problem space which is a

space of algorithms. However, the subjects occasionally solve subgoals and make discoveries within

the geometric task.domain space, whose components are points and lines. This is not the only way it

could have happened. For Instance, the subjects could have (but did not) first solved the problem of

finding the convex hull in a geometrical space and then transformed this knowledge into an algorithm.

Thus, we can identify four elements that comprise the core of the subjects' general approach to

finding the convex hull' algorithm:

1. The very rapid development of a highly schematic key or kernel idea.

2. The general use of successive refinement for further development.

3. The main methods of symbolic execution and test-case execution, which involve
execution of the (partial) algorithm against an appropriate data set.

4. The use of a single main problem space for representing the algorithm with side
excursions Into a domain space for testing and discovery.

These four elements do not by themselves determine behavior completely. Rather, they provide aIi

14

framework within which additional search control knowledge occurs. For instance, a part of the

algorithm must be selected to refine or symbolically execute. Also, there are usually many

outstanding problems to solve, and their number tends to increase, since working on one problem

often creates new ones. Which of these to work on must be selected. While the exact course of

problem solving is determined by the applicability of operators and methods in the problem space,

typically, design steps occur in the order shown below. Many of the steps described here are similar

to those found by Jeffries at. al. [91 to be used in software design, although they propose a production

system model with the steps explicitly controlling the problem solving process.

9 Select a problem -- the problems are exposed by symbolic and test case execution. They
are then considered right away or suspended.

" If a problem is critical (other problems depend on it), work on it right away.

o If the current problem is trivial, at least for the current level of detail, do not
consider it any further.

" If a new component has been added, refine it right away to another level of detail.

o It a set of components has been added, start refining them in structure order,
breadth-first. The structure ordering occurs as a natural consequence of the
execution methods.

* Problem solve -. try to get the kernel idea or solution plan. In an expert problem solver,
several possibilities will suggest themselves. Evaluate each and take the best. This may
result in declaring the problem unsolvable.

" If a plan or similar problem can be retrieved from memory, try to use It.

o If retrieval fails, try to get more knowledge about the problem by experimenting In
the domain space, for example using test-case execution on the partial algorithm
design developed so far.

9 Structure -- lay down the basic structure such as generate and test or divide and conquer
or input.process.output. This effectively decomposes a problem into subproblems, or
outlines the structure of a solution to a single problem. Many new problems or goals may
be added as a result of structuring. Structuring occurs naturally as a result of selecting a
kernel schema and then trying to execute it.

* Elaborate -- fill in the details of the structure. Use specific knowledge appropriate to the
problem or task domain, or use the general technique of symbolic or test-case execution.

15

Verify -- if a previous pass of symbolic or test-case execution was successfully completed with
no inconsistencies or missing components, consider the (partial) algorithm verified.

o If it is not very certain the (partial) algorithm will be used in the final solution, skip
the verification.

o If the partial algorithm is likely to be used, perform another pass of symbolic or
test-case execution and check for inconsistencies, missing pieces, or unproven
conjectures.

o If an assertion is made about the task domain, the statement must be verified within
the task.domain space, perhaps by test-case execution of the assertion.

o If a very careful verification is desired (once the final solution is determined or
before coding), symbolically execute the program, checking that initializations,
base cases, degenerate cases, and so forth, are present.

e Evaluate -- decide on the goodness of the technique. The decision is usually based on
the time complexity (or space, or simplicity) relative to other alternatives or known or
estimated lower bounds. Thus, complexity analysis may be a subtask of evaluation; it
also may be combined with verification.

The literature on problem solving makes a distinction between expert and naive problem solving

styles. Although our subjects are hardly naive about algorithm design and theoretical computer

science, there is still substantial variation in the three attempts. In the initial attempt, S2 finds the task

relatively unfamiliar. S2's second attempt demonstrates both more familiarity with the convex hull

problem, built up during the first try, and a moderate experience with the divide and conquer schema.

Finally, 84 knows more about the design of geometric algorithms and about divide and conquer than

does S2. The successive increases in knowledge are clearly apparent in the three attempts.

However, we do not find a major difference in design styles among our subjects, either in the methods

used or in the order in which things are done. At times, all experts are at a loss for a quick solution.

For example, S2 is not immediately able to state how to divide a set of points for a divide and conquer

algorithm, whereas 84 immediately recalls that sorting and taking the median is a standard technique.

When knowledge is lacking, all subjects rely on general problem solving schema such as generate

and test, they search the task-domain space for usable facts, and they make more use of the methods

of symbolic and test-case execution. Whenever there is more knowledge, as in S4's more complete

schema for divide and conquer, the extra knowledge is brought to bear and improves the problem

solving, but does not affect the style.

. f
I -I I ••-i , .

16

4.2. A data-flow problem space

Looking in detail at protocols has allowed us be very specific about how knowledge, operators, and

control can be represented for algorithm design. These can only be summarized here. For a few

more details, see [11].

A problem solver does not know the solution to a problem, but rather must perform a variety of

operations to acquire additional increments of knowledge about its nature. Thus, the partial

knowledge must be encodable in some internal representation so the problem solver can retain it

while taking additional steps to elaborate or extend it. What representation of knowledge Is

appropriate for algorithm design?

The subjects appear to work in a data-flow problem space (DFS) whose states represent partially

specified algorithms. Figure 3-4 provides an example, although it leaves out some details in the

interest of clarity. Each state is a data-flow configuration that includes pieces of algorithms, the

data-flow links between them, the objects being manipulated, and assertions about the algorithm.

The algorithm steps are represented by process components. There are a small number of generic

process components (flow controllers such as generate or test) and some general constructs such as

apply that can be specialized to domain operations such as draw-line-segment. The inputs and

outputs of the process components are represented by ports connected by links. Process

components can be further specified by assertions. The components and assertions together modify

and control the flow of items that represent data objects such as points and line segments.

Assertions can" be attached to an object, to a process component or link, or to the space as a whole.

The small number of components allows the decision of which component to use to be based on

relatively small amounts of knowledge. A more discriminative vocabulary, such as might be found in

expert design, can be built up from the simpler vocabulary and can coexist with it. For example, the

problem space can include a schema for and assertions about divide and conquer algorithms or

about dynamic programming algorithms. DFS appears to be more appropriate than a purely

algebraic, procedural representation for designing algorithms, especially before the problem is well

understood, because it allows a spectrum of specification from assertlonal to algorithmic. We

conjecture that most people's default design space is a variant of ,DFS and that DFS will be an

Interesting default space for automated design. Data-flow representations are not new; they have

been studied in computer architecture research, and they have been used to describe artificial

intelligence programs [19] and recently to express algorithm transformations [26]. The structure of

-IA

I

17

DFS is similar to the data-flow model first used in [17] and [19].4

DFS operators refine the component structures in an algorithm description and implement

problem-solving techniques such as symbolic execution. Many of these operators "edit" the DFS

configuration to accomplish very simple but very general tasks. For example, the operators add,

delete, move, or modify process components, links, items, and assertions. They also execute

components and control the problem solving process.

Before applying a problem-space operator, some mapping must be constructed between the

operator's representation of entities and their representation in the current state. The more flexible

and extensive this mapping, the wider the range of entities it will successfully apply to. Since the

subjects' editing operators are very general, and hence flexible, the specificity- in what they

accomplish comes from this mapping. In DFS, a good deal of search (and/or knowledge) is required

to decide how to instantiate an operator or fulfill its preconditions. For frequently used generic

components, a wealth of specific search control and instantiation knowledge is available. Operator

selection rules describe which process components to add to the algorithm description, how to link

them to the other components, defaults for how to instantiate them, defaults for which components or

parts of components to refine first, and so on. To apply operators in less common circumstances,

more general techniques are needed. For example, S2 and 84 seem to use means-ends analysis to

control the processes of adapting an operator to a specific problem state.

The search control rules provide knowledge to the problem solver in operational form rather than

as data to be interpreted. The set of search control rules includes a variety of methods such as

means-ends analysis, symbolic execution (and its specializations to test-case execution and

analysis), refinement, and divide and conquer. The methods are implemented by search control rules

about when to apply the method, how to apply the method, and the defaults in the method. Other

search control rules determine which operators are selected, evaluate the states, and decide whether

to go forward in the current space, back up, or work in another problem space.

Refinement of new components is the general process that drives the problem solving in algorithm

design problems. But in the absence of any problem-specific knowledge, means-ends analysis is the

default method. Means-ends analysis Is the continual comparison of the current state with the

desired state (or its description); the result of the comparison (a difference or an opportunity) is used

to select the next operator (to reduce the difference or exploit the opportunity).

4 Mmny of our detailed deplp of OF8 we modeWlle [12J.

7 he '. -j

18

Once at least one process component is present, symbolic execution can be used to get more

information. Symbolic execution means running the process components on a partially specified

computational state. The detection of difficulties and their solution leads to continually refining the

process and computational state. If this is not sufficient, execution in the task environment can be

tried. Test-case execution is a variant of symbolic execution in which all items in a set are examined

individually rather than being represented by a single symbolic item. Test-case execution is more

time consuming than symbolic execution because it is linear in the number of individual items for

which the algorithm is executed whereas symbolic execution is linear in the size of the algorithm

structure. Thus, while the subjects use test-case execution if needed to make progress, they usually

shift back to symbolic execution when they can generalize a step sufficiently. Symbolic execution Is

used in a number of different circumstances:

" To elaborate the algorithm description (often the test-case variant is used for this).

" To verify an algorithm (if no difficulties are identified).

* To describe an algorithm (intermediate and low level refinements may or not be
included).

" To guide problem solving in domain space (often the test-case variant is used for this).

" To analyze the time complexity of an algorithm (naive analysis is mostly a matter of
counting nested generators, as illustrated by S2's difficulty in identifying a factor of N
corresponding to a reset of a generator).

4.3. The task-domain space

The application-domain space is the work-horse space for the test-case execution of algorithms, a

space for problem solving about the domain, and a source of key Insights for designs. In the convex-

hull design problem, the task-domain is a geometric space. The representations in this space are the

geometric figures, partly drawn on the board, using points, line segments and polygons, and involving

relations between objects such as above, between, inside, and convex. This problem space has a

number of geometry-specific operators (create a point, construct a line from x to y), as well as some

general operators (find, partition, test, enumerate) that are typically specialized in geometric ways

(partition a point set, enumerate pairs of points). It also has a general perception operator which Is

specialized to the space in that it reflects spatial, geometric knowledge.

Test-case execution requires a number of operations In the domain space. First, Wefore executing

a test case of a data-flow configuration, an example or test case must be produced (for example, a

small set of points). The task space Is the source of this example. The subjects clearly have rules for

evaluating as well as generating examples and will remark on an example being too simple. During

t - . -~ Orem-

L14 -.

19

test-cms execution, assertions such as predicates on test components (for example, "are all points
on one side of the line?") may have to be evaluated in the task space. Also, in the process of
test-case execution, items from the example may be produced by a generator or stored in a memory.

The representation in the geometry space of memory access operations may not correspond directly

to the DFS algorithm description. For example, storing a point in a memory is sometimes recorded in

the geometry space by drawing a line on a figure on the blackboard from the most recently stored

point to the new point. In fact, many data-flow space operators (such as draw a triangle) update the

example in the geometry space. This leads to much ambiguity in the data-flow representation about

whether or not intermediate results are stored.

Some problem solving occurs within the task space. Generating test cases (and attempting to find

counterexamples) is one category of such problem solving. Other examples are finding (visually, not

algorithmically) the convex hull of point sets and comparing (with means-ends analysis) two subhulls

with the final hull to find differences. "Proofs" of conjectures occur partially within the space, usually

by demonstration on an example and some argument about generalization. However, most problem

solving within the task-domain space consists of just a few operator applications.

4.4. Discovery

Design and other difficult problem solving is punctuated by moments of discovery. These can be

identified as the sudden emergence, without apparent preparation, of new knowledge which

subsequently plays an important role in the solution attempt. These are the moments when

something new and important is suddenly "seen." Within the total picture we have just sketched,
many of the kernel ideas are discoveries, with successive refinement and symbolic execution being

the working out of details. Understanding the nature of these discoveries is a central issue in

obtaining a system that can discover algorithms on its own. Little work on discovery has been

reported in the artificial intelligence literature. The AM and Eurisko programs [6, 15] are open-ended

concept discovery and exploration systems that create Interesting new concepts, but they are not

problem-solving systems that focus on solving a particular problem and make discoveries relevant to

that problem.

Let's look at how discoveries occur In the protocols. One example is the discovery of Test1 In 2's

Algorithm GT. We will treat this in some detail, for the discovery seems particularly creative and

sudden from the protocol. The relevant fragment occurs at L35 to L46, which we reproduce from

Figure 3-2. S2 has just started tst-case execution and has drawn a sample figure of five points on

the board (without labels):

7I
... .. . -.-,.

20

L35 Ok, let's suppose I start wi*th a point here.

L36 And I'll just draw a line to some other point, right?
L42 Now I can go in any one of three directions from this point

L43 I conjecture that

L44 if it's the case that I can choose two points,
L45 such that I can go on either side of the given line,

L46 then this line can't be on the convex hull.

In L35, S2 generates a point ("A" in Figure 3-2) and then draws a line to another point, "B" (L36).

There follows an irrelevant interruption by the experimenter and a response from the subject (L37 to

L41, not *hown). Then the subject comments (in L42) that there are three possible directions to go

from B and immediately thereafter enunciates clearly and completely Test, (L43 to L46). This seems

to come out of the blue -- a genuine discovery. It is rather neat and serves S2 through two attempts at

an algorithm. The test itself is not particularly obvious. To be sure, there is L42 as an antecedent, but

that also calls for explanation -- what made'S2 consider the three directions just at that point and what

bearing, if any, does that have on the discovery. Also, we must explain why the test determines

whether line segments are on the hull whereas the original goal was to generate and test points.

We can analyze this discovery from the problem behavior graph [21] that summarizes S2's search

behavior. The relevant fragment of the problem behavior graph is shown in Figure 4-1. The nodes

are the states in S2's problem space, numbered in order of occurrence. The arcs show the

application of the operators in either the algorithm space DFS (labeled execute, refine, add input, add

component), in the geometry space (labeled perceive, draw line), or the goals to be solved (labeled

refine, instantiate). The results of applying an operator occur as the next state (the next node), and In

effect move the subject through the graph. The graph is too big to fit into the figure without folding

back on itself (the dotted lines). The inset shows the graph drawn whole, but highly compressed, so

its structure can be appreciated. The representation of subgoals can be seen clearly here: the

branch for the goal is broken in the middle with a vertical dotted line and then commences

horizontally again further down the page. The entire subgraph to the right of the break is the search

that occurs to achieve the subgoal. When the behavior internal to the subgoal finishes, new behavior

continues along the vertical dotted line and the following horizontal line. Thus, goal behavior is

represented twice, once as the search tree for the behavior inside the goal, and also as a single

horizontal-vertical-horizontal branch showing the goal attempt analogously to a single operator

application. Finally, underneath the branches are the protocol line numbers (for example, L35 below

node [1D corresponding roughly to what Is happening at that point.

As Is apparent from the branching in the figure, S2's problem-solving behavior Is a search for an

k€~

|4

21

Execute Resulta Execute (fall to
Generate1 Point A Test execute)

[-------------[2] 1-------- [3]
L35 I

IAdd Input is
Refine assertion candidate Move

Goal Test1 to Test1I hull-so-far component Mz
(4]-------------[5]--------------------[6] ----------------- (- 7]:

(to 23)

*instantiate
input to Draw line Line Perceive if

* Goal Test1I from A to B A-B1 good input (fail)
(7) ---------------[8] ------------- [9] ------------- [10]

L36

IDraw line Line Perceive if
Ifrom B to C 8-C good input (fail)

(1--------------(12] --------------(13]

Draw line Line Perceive if
Ifrom B to E B-E good input (fail)

[14] ------------- [15] --------------[16]

I Perceive
IDraw line Line Perceive if test for
Ifrom 8 to D 5-0 good input (fail) Test 1 (succeed)

(17) ------------- [18] -------------- [19] --------------[20]
142

Produce program
for Test in

(cancel) geometry space (succeed)
---- - [21]------------------------ [22]

143 to 146

(from 4)

* Execute Result
* Test test fails

[23]J------ ---------- (24]
147

1--2--3

4-: 5---21--2

:-2 --2

Figure4-1:~~~ ~ ~ ~ ~ ~ Prbe Beaio1rpho-S-nfrget2fAloihmG (ipife)

.......

T -74-16-1

22

algorithm. S2 searches primarily in the algorithm space and occasionally solves subgoals in the

geometry space. These are usually quite limited behaviors for executing or instantiating DFS

components or assertions. However, in a few instances, such as nodes [6] to [19] here, substantial

problem solving occurs in the geometry space.

To set the stage for the discovery, prior to node [1] S2 has the basic schema

(x)...)Generate1-->Test 1 ->{z} and has begun test-case execution by constructing the five-point

figure. Moving into the method, S2 first generates a point "A" (node [2]). That particular point is

chosen because S2 knows that it is in fact on the hull.5 S2 then moves to execute Test1 on point A,

but this fails because there is no actual test there (node [3]). Thus, S2 backs off and creates the

subgoal of refining Test1 (node [5]). This is the normal way test-case execution and symbolic

execution work to extend an algorithm.

The given form of input to the test is inadequate (node [5]), because S2 sees no way to test a single

point algorithmically. The test input must be a larger structure, so S2 modifies the form of the input to

the test from a point to a candidate convex hull (nodes [6] and [7]). Since {z} is already the hull-so-

far, this involves moving {z) from the output of Test1 to its input.

S2 must now find a suitable part of the hull to use as an input to Test1 , in order to discover an

actual test predicate. Thus, S2 sets up the subgoal of finding this instantiation (node [7]), which

implies going to the geometry space. S2 draws a line from A to another point ("B"), tentatively

incorporating the segment A-B into the hull-so-far (node [9]). Point B could be selected because it is

not on the hull or because it is a nearby point; the evidence is not clear. The line could be drawn from

A to B because the hull is a polygon, but it could also be drawn just as a way to keep track of an

ordered set of points. But S2 still cannot see how to determine whether the segment A-B is on the hull

(node [10]), so A-B is unsuitable as the required input. Therefore, S2 again prepares to draw a

segment from the last point (B) to another point. By now, having failed twice, S2 ronsiders the

alternatives that have not yet been selected, which are the threi points C, E, and D. All are on the hull,

and S2 mentally draws a line to each possibility (nodes [11] through [19], protocol line L42), as shown

in Figure 4-2.

Each triple (A-B-C, A-B-E, A-B-D) is assessed as a potential input and is found inadequate (nodes

[13], [16] and [19]). However each of these assessments yields a bit of partial information, and the

5The only facts known about the points are whether or not they are on the hull (see L30), so this is the only possible
selection criteria. Additional evidence that the selection of A is deliberate is found in episode E3.3 when 82 decides to try
starting from a point not on the hull to see how the algorithm will handle a "harder" case.

M 1

23

C

A--------------- B .-. .E

0

Figure 4-2: Figure for discovery of Test1 .

co-occurrence of all these bits of information in fact yields a successful predicate for Test 1 (node
(20]). That is, what is perceived (discovered) is not a solution to the goal of finding a suitable

instantiation, but a solution to the main problem of finding a test for being on the convex hull. Thus,

S2 cancels the instantiation subgoal (node [211) and then, on returning to the subgoal of refining
Test 1 , constructs the procedure for the test (node [23], protocol lines L43 to L46).

To see the actual discovery, consider the configuration in Figure 4.2, which S2 creates in pursuing

the instantiation goal. It consists of three lines radiating from A-B, with the middle one almost an

extension of A-B. With these lines in place, S2 notices that the convex hull cannot lie above the line
A-B (for example if it goes from A to B to C) because then D and E would not be inside the hull. But

also the hull cannot lie below A-B (for example if it goes from A to B to D) because then C and E would
not be inside the hull. There are only two sides to the line A-B, so the edge A-B cannot be on the hull

at all.

Although the discovery was made with three points, S2 generalizes the test to use two points in the
conjecture of lines L43-46. Although not part of the discovery, it is interesting that the program for

Test 1 is in geometry space, not in algorithm space (DFS). Furthermore, the test is executed many
times during the rest of the session, but it is never recoded as an explicit set of components in

algorithm space.

The recognition involved in the discovery of the test involves drawing lines not explicitly part of the

algorithm, seeing the completion of polygons, and reasoning in the geometry space. In an important

sense, the discovery is an accident. S2 was not trying to find Test 1 at that point. On the other hand,

the degree of preparedness was phenomenal. There was an active supergoal to refine Test I and the

test explicitly being made -- whether the three points (two segments) was adequate to determine the
hull and thus be a suitable input -- was Intimately related. Still, it required the fortuitous conjunction

of the partial results to provide the local context in which the predicate for Test I could be

recognized.

- -I J;II - "'

24

S2 makes several other discoveries during the construction of Algorithm GT which we will not

analyze in detail here. For example, in the preceding discovery, S2 assumes it is sufficient to look at

the set of points remaining (not already on the hull) to test whether there are points on both sides of

the edge. In a later situation (L120-L124), a segment is clearly not on the hull (that is, the fact can be

perceived directly in geometry space) but points from the remainder set are all on one side. S2

notices a violation of the earlier assumption. Points from the entire set, not just the remainder set,

have to be considered. Here the discovery does not satisfy a previously unsatisfied goal, but does

pertain to an unverified assumption about Test1 . Another discovery occurs when S2 finds a second

segment on the hull (L133-L135). Here, S2 notices that when a segment is on the hull, the points are

not only always on one side, they are always on the same side if the segments are given directionality.

This observation yields an additional assertion about Test1 .

Both subjects make the same critical discovery, though in different ways, in their divide and

conquer algorithms. They both discover that is much easier to merge the convex hulls if the points

are divided so that one point is shared by the two resulting point sets (and is therefore shared by the

two hulls in the subproblem solutions). Both S2 and S4 originally divide the input points into two

disjoint sets by drawing a line through the middle, but then have trouble figuring out how to merge. In

both cases, the discovery of the possibility of dividing through a central point is quickly followed by

progress in refining the merge step.

A number of factors contribute to causing S2 to focus on including the center point in both hulls.

S2 is looking at the figure Figure 4-3, with the goal of finding a way to restrict attention to the points

on the two hulls that would be kept in the merged hull.

Figure 4-3: Initial division of points and solution of subproblems by S2.

First, the experimenter interrupts and asks whether S2 is assuming that all points on the hull after the

merge are on one of the two hulls in the subproblem solution. The interruption seems to be

misunderstood by S2 to be asking whether each point Is exclusively in one of the two hulls, perhaps

suggesting that some point should in fact be Included on both hulls. Also, 82 seems to shift focus to

.wo.

25

points not on the merged hull, since restricting attention to points on the hull does not lead anywhere.

The center point is the only such point. Finally, several physical features in the diagram itself focus

attention on the center point. First of all, it is the center of the picture. Also, it is at the tip of one

triangle and would also be the tip of another triangle if the figure were completed.6 As a result of all

these factors, S2 considers including the center point on both hulls. This provides the opportunity to

start the merge at an interesting point that is symmetrical for both subproblems.

The other subject, S4, comes to the same conclusion by a different discovery path. S4 compares

the two subhulls with the desired merged hull (which is easy to construct in geometry space), notices

that there are some edges missing, and considers exhaustively generating the possible missing edges

by drawing lines from points on one subhull to points on the other. After drawing in some of the

edges (Figure 4.4), S4 concludes that most edges are not needed and that constructing them will be

too expensive.

Figure 4-4: Merge attempt in a figure by S4.

S4 is focused on the new lines trying to decide which one are useful and which are not. At this

point, enough lines have been drawn on paper so that two convex polygons share a point near the
center of the figure. Since S4 has already mentally deleted some of the extraneous lines (the ones to

"extremal" points), these connected polygons are readily apparent. S4 is familiar with other

geometrical merging algorithms that start from a shared point (reported later in protocol). Therefore

the visual reminder of the possibility of a non-disjoint division, after the previous difficulty in finding a

merging process, gives S4 enough incentive to change the divide step to use a line through a point.

Thus, we see that discovery is the sudden viewing from a new perspective of a structure (or

technique) that is already in existence for another purpose. Often the dipcovery solves a previously

posed but unsatisfied problem, but sometimes it is an unlooked for refinement. Thus, we might say

that the problem solver Is doing the right thing for the wrong reason, and that this is made possible by

6Other evidence for the tendency of subjects to complete polygons that are only missing one side Is detcribed In (131.

II

26

the existence of a prepared mind.

The discoveries we have observed take place in the geometry space, whereas the problems they

solve are posed in the algorithm space. In particular, visual noticing seems to be a combination of

unsatisfied goals in the background and certain involuntary operators in the task space. At least in

geometry space, there are certain configurations of data items that lead to recognition or automatic

inferences (for example, completing polygons that are missing one edge and seeing polygons in

regular patterns of points). Discoveries often occur when a subject is looking at a figure during

test-case execution. Particularly when subjects are lost, they repeat test.case executions or stare

blankly at figures.

Discoveries and refinements also occur when a subject.is explaining an algorithm. Explanation is

not a neutral activity; it can be dynamic problem solving, not just a repeating of past history or a

simple readout of an algorithm structure. Subjects sometimes explain algorithms at the request of the

experimenters, but often produce explanations for their own sake when they do not fully understand

how to proceed. The process of explanation is another instance of symbolic execution and holds the

same possibilities of noticing untested assumptions, untried cases, inconsistencies, and fortuitous

configurations in sample figures. For example, S4 adds a prepass to the divide and conquer

algorithm to sort the points during an explanation of why the algorithm was N log N, after the design

session officially is over.

5. A Comparison of Designs
Figure 5-1 shows the number of lines of protocol corresponding to a variety of design activities for

Algorithm GT and Algorithm DC of subject S2 and Algorithm DC of subject S4. As the totals show,

S2's second design takes 5 times as long as the first. Why? S2 arrives at a more efficient algorithm,

but is it 5 times as complex? Our analysis has shown that S2 uses essentially the same discovery and

derivation techniques, applying even more extensive algorithm knowledge in Algorithm DC.

Furthermore, there Is no Interference from the first algorithm. In fact, there is a useful carry over of

the test whether a segment Is on the hull. Similarly, 64 finds a divide and conquer algorithm in less

than half the time it takes S2. Is this because S4 is smarter?

Probl Hi Extr Aleor itis lnterrusta TotaAcoutsttion Dosin Effort Evaluation

82. Aig OT 1 114 0 53 76 2e
82, Alll DC 0 496 252 6 53 1309
S4, AIll OC 23 172 0 10 to 2ll

Figure 5-1: Decomposition of design activities, in protocol lines of 2.5

seconds/line for 62 and 3 seconds/line for S4

27

Figure 5-1 separates the time devoted to the main design (as it finally emerged) from the times for

understanding the problem specification, for extra effort not contributing directly to the final

algorithm, for evaluating the final design, and for interruptions not relevant to the design task. It

reveals that the main design time for S2's second algorithm is 4.4 times that of the first, but that if the

extra effort is considered, the ratio is 6.8. If we define the difficulty of the subject in designing the

algorithm to be the ratio of time spent on extra effort to time directly relevant to the final design, then

S2 has 0 difficulty with the first algorithm, but 57% difficulty with the second. 84 has 0 difficulty. How

do we understand these differences?

The number of components used to represent an algorithm in DFS provides a measure of the

structural complexity of the final algorithm. Though simple, it reveals the nature of the subjects'

processing. Figure 5-2 further' subdivides the activities into adding components, adding assertions,

executing (symbolic and test case) partial algorithms, and other problem solving. (The decomposition

of the extra effort is discussed below.) Each row includes the number of components and then, for

each type of activity, the time per component (in protocol lines).

The time per component in the main line of the design of the two algorithms is approximately

constant for the activities of adding components, adding assertions, and execution, totalling 18

protocol lines per component (45 sec) for S2 and 12.3 lines per component (37 sec) for 84. The

number of assertions per component is about 1 (.86, .96, and .82 for Algorithms GT and DC of S2 and

Algorithm DC of S4 respectively). In problem-space terms, this means that the great bulk of activity is

not problematic, but is proportional to the structural complexity of the algorithm being designed.

Thus the factor of 4.4 between S2's algorithms and the factor of 2.4 between S2's Algorithm DC and

S4's Algorithm DC are simply because S2's Algorithm DC has more components.

The results for 84 are similar to those for 82 with a few exceptions. The number of protocol lines
per component is quite similar for adding components and assertions, but less time is spent on

symbolic execution and more on other problem solving. In fact, since S4 spends 3 seconds per line of

protocol,7 S4 actually spends a little more time than 82 in adding components and assertions. These

differences can be explained by the fact that S4 has a broader base of algorithm design experience

than 82 and spends more time in expert design activities -- evaluating general principles and

considering analogous algorithms .- and less time in the naive design activity of test-case execution.

The analysis reveals that S2's extra effort in Algorithm DC is devoted to four distinct problems. The

8S4 oawn more frequently and for fongr period of timeO tha

.. n

28

lkiinbr ot Addlin n A. Symbolic and Other
Comoopnts Coemofents Assertions Test-case Problem

Execution Solvisg

$2. Algoritlhm ST
Main line 7 1.9 4.3 10.1 0.0

S2. Algorithm DC
Main line 27 1.6 5.0 10.8 1.0
Extra Effort

0-point divide 2 2.0 0.6 0.5 0.0
(Episode E2.4)

2-point divide 3 2.3 2.3 6.3 8.3
(Episode ES)

lexicographic sort 2 1.0 4.6 18.0 0.0
(Episode E11.3)

lost on divide 3 1.7 2.0 42.0 12.3
(degenerate cases)
(Episode E10)

S4, Algorithm DC
Main line 14 1.9 4.4 4.0 2.0

Figu re 5-2: Breakdown of main design and extra effort activities in protocol lines per component

first three are additional algorithm construction steps similar to the main design but superseded by

subsequent search (for example, since the dividing line finally passes through 1 point, the 0- and

2-point solutions become extra effort). This extra effort fits into a standard search framework as

additional branches.

The fourth case is different. It is much longer (62% of all extra effort), and the construction of three

extra components, counted at the standard 18 lines per component, accounts for only 31% of the

work. S2 becomes lost in this problem, worrying about how to take advantage of degenerate cases

rather than how to avoid them, and wanders around, repeatedly failing to make progress and not

retrieving enough knowledge to posit new components and investigate them.

This fourth case makes evident the role of symbolic and test-case execution. S2's behavior shows

that the algorithm structure Is not grown in a simple depth-first fashion, but rather that the execution

steps scan this partial structure to find the next place to extend it. Thus, in the last extra-effort case,

the amount of time devoted to execution steps is very large (42 lines per new component), compared

with that for the main line (10 lines per component), because the subject cannot find any new

information to use, so repeatedly scans over the structure in vain.

6. Discussion
Our analysis of the human design process suggests that an automated design system could be built

around the same problem-space model that people seem to fit (one benefit of studying human

design). We have applied the operators we postulate for the data-flow space and geometry apace to

I T

29

explain most of the major jumps and shifts in the protocols (although some steps remain to be

explained in detail), which gives evidence that the problem-space model accounts for our subjects'

behavior. From this behavior of S2 and S4, we conclude that an automatic system of analogous

design should have the following properties:

* Algorithm representations must be deliberately ambiguous in order to handle partial
states of knowledge and assertions that have not been fully integrated during the design
process.

A variety of algorithm design schema such as generate and test or divide and conquer
must also be available.

* A variety of search control methods must be available. Symbolic and test-case execution
and means-ends analysis are versatile general methods.

e To provide for flexibility or robustness in unforeseen situations (which are by definition a
common occurrence in design), a few general purpose operators with a powerful
mapping process (such as means-ends analysis) should be used. Local adaptation to
bridge the gap to the best available knowledge is preferable to providing many detailed
operators whose applicability is determined by a simple pattern match.

We have also made some observations about the process of human discovery that could be

incorporated into an automatic design system to allow it to exhibit a good deal of flexibility,

robustness, and creativity:

" Discovery involves a prepared problem state (unsatisfied goals in the algorithm space).

" Discovery requires an act of recognition in the task-domain space.

" As a result, discovery means doing the right thing for the wrong reason.

Since we have looked only at a small number of protocols and subjects, many interesting questions

remain unexplored. How does the design process vary from person to person? How much does it

vary with the domain of the algorithm being constructed? Is the main design time always proportional

to the number of components in the design? How important is the process of analogy for adapting

known algorithms to solve new problems? We expect that the study of additional human protocols

will shed some light on these questions and may also give us some hints about how to automate the

process of learning. For example, we would like to know whether the use of analogy is a component

of learning, and whether multiple spaces are important for automated design. The main spaces In the

designs studies so far seem to be only the task space and DFS, with the task.domain space used as a

subspace of the main space DFS. If multiple spaces turn out to be Important, we will have to decide

how to build different problem spaces to work in and how to construct operators. Little research has

been done on this. It may turn out to be some sort instantiation process of specializing more general

spaces to particular situations. It may shed some light on how algorithm design is learned.

MAA J

30

We are not currently aware of any serious limitations in the basic data-flow and successive

refinement approaches at this time, but we have hardly resolved all the issues in building an expert

design system. One issue is how to store and access the large volume of knowledge that will be

required for high performance; this also implies that good search controls will be necessary. Another

issue is how the subjects (and hence automatic design systems) switch between problems spaces.
For example, how does a problem solver build a program in geometry space or algorithm space from

remembered previous problem-solving actions? Finally, we still need to explore in more detail the

process of a visual "noticing" and the details of the geometry space. This area is poorly understood

despite an immense amount of research on visual perception.

We are actively studying the issues involved in building an expert design system and have begun an
implementation of a simulation system that will recreate the algorithms designed by S2 and S4. We
will also continue studying human protocols. As we add more and more algorithm and search control

knowledge based on these studies, the system will gradually be extended into an automatic algorithm

discovery system.

Acknowledgements
We thank our subjects for their time and interest in this project. David Steier carefully read a draft

of this paper and provided many helpful comments. Steier, Edward Pervin, and Brigham Bell are
helping to implement a simulation system to test our hypotheses.

," f ,-,,-

31

References

1. Balzer, R. "Transformational implementation: an example." IEEE Transactions on Software

Engineering SE-7, 1 (January 1981).

2. Bibel, W. and Horning, K. M. LOPS - A System Based on a Strategical Approach to Program

Synthesis. Proccedings of the International Workshop on Program Construction, France,

September, 1980.

3. Brooks, R. A model of human cognitive behavior in writing code for computer programs. Ph.D.

Th., Carnegie-Mellon University, 1975.

4. Cheatham, T. E., Townley, J. A., and Holloway, G. H. A system for program refinement.

Proceedings of the 4th International Conference on Software Engineering, September, 1979, pp.

53-63.

5. Darlington, J. "A synthesis of several sorting algorithms." Acta Informatica 11, 1 (1978).

6. Davis, R. and Lenat, D. B.. Knowledge-based Systems in Artificial Intelligence. McGraw-Hill, 1981.

7. Ericsson, K.A. and Simon, H. A. "Verbal Reports as Data." Psychological Review 87,3 (May

1980), 215-251.

8. Green, C. C., Gabriel, R., Kant, E., Kedzierski, B., McCune, B., Phillips, J., Tappel, S., and Westfold,

S. Results in knowledge.based program synthesis. Proceedings of the Sixth International Joint

Conference on Artifical Intelligence, Tokyo, Japan, August, 1979, pp. 342.344.

9. Jeffries, R., Turner, A. A., and Poison, P. G. The Processes Involved in Designing Software. In

Cognitive Skills and Their Acquisition, John R. Anderson, Ed.,Lawrence Erlbaum Associates, 1981,

ch. 8.

10. Kant, E.. Efficiency in Program Synthesis. UMI Research Press, 1981.

1 1. Kant, E. and Newell, A. Naive algorithm design techniques: a case study. Proceedings of the

European Conference on Artificial Intelligence, Orsay, France, July, 1982.

12. Laird, J., and Newell, A. Planning: A problem-space perspective. (in preparation)

13. Larkin, J. Spatial Reasoning in Solving Physics Problems. Tech. Rept. C.I.P. #434, Carnegie.

Mellon University, Department of Psychology, 1982.

14. Lee, S., De Roever, W. P, and Gerhart, S. L. The evolution of list-copying algorithms and the

need for structured program verification. Proceedings of the Sixth Annual ACM Symposium on

Principles of Programming Languages, San Antonio, Texas, January, 1979, pp. 53.67.

.

32

15. Lenat, D. B. Heuretics: Theoretical and Experimental Study of Heuristics Rules. Proceedings of
the National Conference on Artificial Intelligence, August 18-20, 1982, pp. 159.163.

16. Low, J. R. "Automatic data structure selection: an example and overview." Comm. ACM 21, 5
(May 1978).

17. Moore, J. A. The Design and Evaluation of a Knowledge Net for MERLIN. Ph.D. Th., Carnegie-
Mellon University, 1971.

18. Morgenstern, M. Automating the software design process for management information systems.
IEEE Computer Software and Applications Conference, November, 1977, pp. 642.647.

19. Newell, A. Heuristic programming: III structured problems. In Progress in Ojerations Research,
Aronofsky, J., Ed.,Wiley, 1969, pp. 360.414.

20. Newell, A. Reasoning, Problem Solving, and Decision Processes: The Problem Space as a
Fundamental Category. In Attention and Performance VII, Nickerson, R., Ed.,Erlbaum, Hillsdale, N.J.,
1980.

21. Newell, A. and Simon, H.. Human Problem Solving. Prentice-Hall, 1972.

22. Petry, F. E., and Biermann, A. W. Reconstruction of algorithms from memeory snapshots of their
execution. Proceedings of the 1976 Annual Conference, ACM, New York, 1976, pp. 530.534.

23. Rich, C. Inspection Methods in Programming. Ph.D. Th., Massachusetts Institute of Technology,
June 1980.

24. Rovner, P. D. Automatic representaton selection for associative data structures. Tech. Rept.
TR 10, The University of Rochester, Computer Science Department, September, 1976.

25. Shaw, 0., Swartout, W., and Green, C. Inferring LISP programs from examples. IJCAI 4, Thitisi,
USSR, 1975, pp. 260-267.

26. Tappel, S. Some Algorithm Design Methods. Proceedings of the First Annual National
Conference on Artificial Intelligence, August 18.21, 1980, pp. 64.67.

:11

